Unfolding of flow

Yuxuan Yan, Sitian Qian

Outline

- Setup: Background & Method
- 1D unfolding result
- 2D unfolding result
- 3D unfolding result (Running now.)

Setup

Background

 Traditionally, people believe that flow vector should be boost invariant:

$$\vec{v}_n(\eta_a) = \vec{v}_n(\eta_b) = \vec{v}_n(\eta_0)$$
$$\vec{v}_n(\eta_a) \to \vec{v}_{n,a}; \vec{v}_n(\eta_b) \to \vec{v}_{n,b}$$

• However, recent experiments suggest a decorrelation effect between different η segment:

Background

 The observed data has a smearing effect(both statistical and non-flow):

Step-by-step problem

1D with no decor. I M. Nie and Arabinda et al 's previous work

Toy decorrelation model (Cont.)

Decor. on EP angle and magnitude

 $d_{n,a} = d_{n,b} = 0.02$ (Magnitude)

 $\Delta \theta' \sim \text{Uniform}(0, 2\pi)$

By this construction, we ensure:

$$\frac{\langle v_{2,a} v_{2,b}^{\star} \rangle}{\langle v_{2,0}^2 \rangle} \approx 1 - 5.5\%$$
$$\langle v_{2,a} \rangle = \langle v_{2,b} \rangle = \langle v_{2,0}^2 \rangle$$

Dimension choice

 $\begin{pmatrix} \vec{v}_{2,a} \\ \vec{v}_{2,b} \end{pmatrix} \longrightarrow \begin{pmatrix} v_{2,a} + v_{2,b}/2 \\ |v_{2,a} - v_{2,b}|/2 \\ |\Delta \psi| \end{pmatrix}$

Dimension	Range	# bins
$v_{2,a} + v_{2,b}/2$	0~0.3	50
$ v_{2,a} - v_{2,b} /2$	0~0.07	10
$ \Delta\psi $	$0 \sim \pi$	10

Method

- Unfold method: Bayesian Unfolding.
- Implement: RooUnfold Package.

• This method has been employed in several 1D unfolding projects successfully.

Method

The response matrix generation workflow

Sample as the true/cause with a prior Distri.: *c*

Add response(smearing in our case) to get observe/effect: *e*

Fill a 2D histogram to obtain the response matrix: p(e|c)

Choice of prior distribution

- The unfolded distribution will by construction **be include in** the given prior distribution of response matrix.
- So the prior distribution should at least fully cover unfolded distribution.
- It's wise to choose distribution after smearing as prior.
- In previous results, we chose a prior distribution on a much larger region. And consequently, fewer data on the concerned region, more error on some region.

1D unfolding

1D: $(v_{2,a} - \overline{v_{2,b}})/2$

14

1D: $\Delta \psi$

15

1D: $(v_{2,a} + v_{2,b})/2$

2D unfolding

Unfold joint $\frac{v_{2,a}+v_{2,b}}{2} \& \frac{|v_{2,a}-v_{2,b}|}{2}$

Projected on $\frac{v_{2,a}+v_{2,b}}{2}$

Projected on $|v_{2,a}-v_{2,b}|/_2$

Unfold joint $v_{2,a} + v_{2,b}/_2 \& \Delta \psi$

Unfold joint $v_{2,a} + v_{2,b}/_2 \& \Delta \psi$

 $\Delta \psi$

More dimensions give more information!

Response matrix of $\Delta\psi$ in 1D unfold

Response matrix of $\Delta \psi$ in 2D unfold (Joint with $v_{2,a}+v_{2,b}/2$)

More likely to be smeared.

3D unfolding

On running...